Delay Optimization Of Anterior Encryption Radix 8 Multiplier Gimbaled Of Non Redundant Architecture BABURAO KODAVATI1, NNV SWAPNA2, M.K.KISORE3, Associate Professor, 2. M.Tech Student, 3. Assistant Professor.

USHARAMA COLLEGE OF ENGINEERING AND TECHNOLOGY, TELEPROLU, KRISHNA -521109, A.P,INDIA

Abstract

In this paper ,introduced a multiplier of anterior encryption radix- 8 multiplier gimbaled of non redundant architecture, multipliers are very useful for digital signal processing and audio and video coding and decoding applications, so it may function based on signed as well as unsigned digits. the new followed designed architecture is non redundant radix 4 here the total power and area both are high so in order to decrease the values of existing method here in proposed system of anterior encryption radix-8 multiplier gimbaled of non redundant architecture, encryption method is changed, and number of partial products are decreased and uses the co efficient of +4 to -4 so due to this the, area, delay and power are decreases.

Keywords: RADIX 8 encoder, partial products

generation, CSA Adder ,CLA Adder.

Introduction

Following accepted customs and proprieties digital signal applications are improved day by day for example in digital signal processing applications multipliers are mostly used due to this the over all area and processing time is decreased drastically[2] .basically this approach can be approach in all high performance and low power
designs. the multiplier is a basic component in DSP applications and those coefficients are not changed even during the execution of application its all is depends on effective architecture.

At firstly the inputs data is encoded by decreasing the non zero digits using canonical signed digit representation (CSD) due this the switching action is decreased but it is hard wired to the specific coefficients and also have some drawbacks so ROM is used to store the outputs for all possible inputs so the computational circuits area and power both are reduced [1] and the partial products are very important for multiplier implementation in booth multiplier the partial products can be reduced to half but these generation is very complex so in order to reduce the partial products complexity used butterfly implementation units of FFT processors by using standard coefficients those stored in ROM [.For this a newly present system non redundant radix -4 is used with fixed coefficients $\{-1,0,+1,+2\}$ or $\{-2,-1,0,+1\}[1]$.in this maximum amount of ROM area is decreased up to each digit request 3 encoding bits per to be stored in ROM. But its required power , area and delay are high so in order to decrease area ,delay and power the grouping of bits are increased so these 3 parameters are decreased by changing the encoding scheme in non redundant architecture .

I. Design Multiplier architecture

Fig1: block diagram of RADIX-4 multiplier

ARCHITECTURE:

First the chip enable ,address and clock those are used to provide the coefficients which in 2's complement form to multiply two inputs $\mathrm{A} . \mathrm{B}$ here B is applied to the encoder from the ROM b is nothing but (b0,b1,b2 $\ldots . . \mathrm{bn}, \mathrm{bn}-1$) this the input is encoded and then multiplied by (A0,A1,A2,A3......An) the k partial products those outputs are summed by using CSA adder (carry select adder) its adds the all partial products here the extra bits are added to this CSA adder to shaping the multiplication .here the MSB bit of first partial product is 1 reaming bits also 1 for shaping CSA adder adds partial products and separate the carry and sum and then these outputs gives to the CLA adder (carry look ahead adder)this produces the final addition of carry and sum if the MSB bit is 1 then the product is sign product or its MSB bit is 0 the product is unsigned product .

For encoding grouping is essential here RADIX-4 grouping is presented for entire 10 bits can be get 5 partial products for non redundant RADIX -4 there is 5 partial products and their co efficient are ($1,0,+1,+2)$, or ($-2,-1,0,+1$). The coefficient are can be calculated depends on 1 previous bit here non redundant coefficient are used depends on the formulas as show in below. Here ${ }^{n_{2 j+1}^{+}}$represents one of the input bit like b1 and $n_{2 j}^{-}$: it means b2 the extra bit is taken like previous bit that is acts as bo bit

$$
\begin{aligned}
\text { one }_{j}^{+} & =n_{2 j+1}^{+} \wedge n_{2 j}^{-}, \\
\text {one }_{j}^{-} & =\overline{n_{2 j+1}^{+}} \wedge \overline{n_{2 j}^{-}}, \\
\text {two }_{j}^{+} & =n_{2 j+1}^{+} \wedge \overline{n_{2 j}^{-} .}
\end{aligned}
$$

PROPOSED SYSTEM:

Fig2: architecture of proposed system of RADIX-8
The above proposed system the grouping is changed due to this the power, area and delay will reduced calculation process is also simply the encoding technique used here is RADIX-8.same algorithm is applied the number of partial products are reduced up to $\mathrm{n} / 3$ here n represents number of multiplier bits applied at encoder input .depends on final output the signed and
unsigned both can be recognized by their MSB bits like existing system

Fig3: grouping of bits in RADIX-4
The entire bits is grouped in to 3 bits one bit is overlapped with another group so for existing system the input bits are 10 bits are considered 8 are input bits reaming are previous bits consider as MSB bits for completion of grouping .

Table 1
RADIX-4 recodings

Multiplier bits			Coeffients in encoding
$\mathbf{y 2}$	yl	y0	
0	0	0	+1
0	0	1	+1
0	1	0	$+\mathbf{1}$
0	1	1	$-\mathbf{2}$
1	0	0	$-\mathbf{2}$
1	0	1	$-\mathbf{1}$
1	1	0	$-\mathbf{1}$
1	1	1	$\mathbf{0}$

Fig 4: grouping of RADIX -8

The input multiplier bits are 8 those are 4 bits are grouped together the one bit is overlapped with another group so the required partial products are 3 the grouping of bits are show in above here the one extra previous bit is consider as a MSB bit for completion of grouping.

Table - 2
RADIX-8 recoding

Multiplier values				
encoded Coeffients				
	b1	$\mathbf{b 2}$	$\mathbf{b 3}$	
0	0	0	0	0
0	0	0	1	+1
0	0	1	0	+1
0	0	1	1	+2
0	1	0	0	+2
0	1	0	1	+3
0	1	1	0	+3
0	1	1	1	+4
1	0	0	0	-4
1	0	0	1	-3
1	0	1	0	-3
1	0	1	1	-2
1	1	0	0	-2
1	1	0	1	-1
1	1	1	0	-1
1	1	1	1	0

PARTIAL PRODUCT GENERATION:

The partial products are generated like here the multiplicand is multiplied by the coefficients of $0,+1,+2,+3,+4,-1,-2,-3,-4$. if the coefficient is 0 the multiplicand is multiplied by $0 . i f$ it is 1 the product is same as like multiplicand value if the coefficients is -1 the product value is 2 's complement form of the value. For -2 its shifts left by 1 bit and 2 'complement form of the multiplicand value if it is 2 simply shift left by one bit .for -4 the multiplicand is shift left by 2 bits and perform 2's complement and multiply by 2 that is shift left to 2 bits .for 3 we can just add $2 Y$ and $1 Y$.due to this the transition time will decrease and the manufacturing transistors are also decreased.

The overall there 3 partial products are given to the CSA adder it produce the sum and carry separately for perfect shaping of multiplication the extra added bits are
added to this adding process both outputs are given to CLA adder here the output is final product .

II. SIMULATION RESULTS OF RADIX-4

Fig5: The XPower analyzer report for existing method having the power of 0.2 watts

Fig6: Simulation results for $\mathrm{X}=119$, and $\mathrm{Y}=109$ those in decimal form and their related partial products

Fig7: simulation results for $\mathrm{X}=00011010, \mathrm{y}=00001010$ for this the resultant output value is out(15):00000000100000100 for clock 0 ,reset 0

In above grouping the 4 partial products are required and the total power required for the device is 0.203 watts and area is show in table

Table-3 ${ }_{\text {Device utilization for RADIX-4 }}$			
	Device Utilization Summay (estimated values)		1
Logicluilization	Used	Availde	Utilization
Nunbeofices	120	4585	2\%
Nunce oficie fiplops	8	8 93012	0\%
Numbe of finatills	200	9312	2\%
Nube oftenodediOs	34	4232	14\%
Nube ofocks	1.	1.24	4\%

Timing Summary for RADIX-4:

Speed Grade: -5
Minimum period: No path found

Minimum input arrival time before clock: 19.864 ns
Maximum output required time after clock: 4.040ns
Maximum combinational path delay: No path found
Timing Detail:

Timing constraint: Default OFFSET IN BEFORE for Clock 'clk'

Total number of paths / destination ports: 156353 / 30

Offset:

$$
19.864 \mathrm{~ns}(\text { Levels of Logic }=17)
$$

Source: $\quad \mathrm{y}<2>$ (PAD)
Destination: out_14 (FF)
Destination Clock: clk rising
Data Path: $\mathrm{y}<2>$ to out_14
Gate Net
Cell:in->out fanout Delay Delay Logical Name
(Net Name)
$\begin{array}{lllll}\text { IBUF:I->O } & 27 & 1.106 & 1.141 & \text { y_2_IBUF }\end{array}$
(y_2_IBUF)
LUT3:I1->O
$12 \quad 0.6120 .886$
m1/m3/Madd_digit_Madd_xor<1>111 (N2)
LUT3:I1->O
10.6120 .000
m1/m4/Madd_digit_Madd_xor<0>1111
(m1/m4/Madd_digit_Madd_xor<0>111)
$\begin{array}{llll}\text { MUXF5:I1->O } & 10 & 0.278 & 0.902\end{array}$
$\mathrm{m} 1 / \mathrm{m} 4 / \mathrm{Madd}$ _digit_Madd_xor<0>111_f5 (N11)
LUT3:I0->O $\quad 12 \quad 0.612 \quad 0.847$
$\mathrm{m} 1 / \mathrm{m} 4 /$ Madd_digit_Madd_xor<1>11 (y4<1>)
LUT4:I2->O $\quad 1 \quad 0.612 \quad 0.387$
m2/pp4<8>_SW2 (N78)

$$
\text { LUT4:I2->O } \quad 3 \quad 0.612 \quad 0.520 \mathrm{~m} 2 / \mathrm{pp} 4<8>
$$

(pp4<8>)
LUT4:I1->O $\quad 1 \quad 0.612 \quad 0.000$
m3/Madd_p2_lut<8> (m3/Madd_p2_lut<8>)

XORCY:LI->O $40.458 \quad 0.651$
m3/Madd_p2_xor<8>(m3/p2<8>)
LUT2:I0->O
20.6120 .449
m3/m3/Mxor_s_Result<8>1 (s<8>)
LUT4:I1->O 3 0.612 $0.603 \mathrm{~m} 4 / \mathrm{c} 91$ (m4/c9)
$\begin{array}{llll}\text { LUT4:I0->O } & 3 & 0.612 & 0.603 \mathrm{~m} 4 / \mathrm{c} 101\end{array}$
(m4/c10)
LUT4:I0->O $3 \begin{array}{llll} & 0.612 & 0.603 \mathrm{~m} 4 / \mathrm{c} 111\end{array}$ (m4/c11)

LUT4:I0->O $\quad \begin{array}{llll} & 0.612 & 0.603 & \mathrm{~m} 4 / \mathrm{c} 121\end{array}$ (m4/c12)

LUT4:I0->O $\quad 3 \quad 0.612 \quad 0.603 \mathrm{~m} 4 / \mathrm{c} 131$ (m4/c13)

LUT4:I0->O
$10.6120 .387 \mathrm{~m} 4 / \mathrm{c} 141$ (m4/c14)

Total route)
19.864ns (10.678ns logic, 9.186ns
(53.8\% logic, 46.2% route)

And the Total delay is $19.864 \mathrm{~ns}(10.678 \mathrm{~ns}$ logic, 9.186 ns route) (53.8% logic, 46.2% route)
III. SIMULATION RESULTS OF RADIX-8

Fig8: Simulation results $a=00000100, y=00000010$ and out(15):0000000000001000 for clock 0 and reset 0

Timing reports for RADIX-8:

The Pone Andysis is upto ode.

Fig:9 Power report of RADIX-8

Table 4

Device utilization for RADIX-8

Device Utilization Summary (esimated values)			H
Logic Uutiliztion	Used	Availdole	Utilization
Nunber of Sices	0	4556	0\%
Nunber foroneed 1088	34	92	36\%
Nurber of MUTTT8X18SS	1	20	5\%
	1	24	4\%

Table-5

parameters	RADIX-4	RADIX-8
power	high	low
Area(partial products)	4	3
Delay maximum input amival time(ns)	19.864	5.001

V.CONCLUSION:

The Anterior encryption radix 8 multiplier Gimbaled of Non redundant Architecture has simulated by using Xilinx 13.1 simulators using the device of xc3s500e fg320 package .the RADIX-8 generates 3 partial products and total cycling time and power are reduces highly the main components are carry save adder and carry lock ahead adder(CLA) those are used to increase the speed of operation the final product is come from the CLA adder hardware implementation is decreased highly as comparative RADIX-4.

REFFERENCE:

1. Pre encoded multiplier based on Non redundant RADIX-4 signed digit encoding k.Tsoumanis, N.Axelos, N.Moshopoulos, G.Zervakis and pekmestzi
2. M.D Ercegovac and T.Lang,"Multiplication", in digital arithmetic .san Francisco: morgan kaufmann,2004,pp.181-245.
3. N.Weste and D.Harris, CMOS VLSI Design: A circuit and systems perspective, $4^{\text {th }}$ ed.USA: Adition -wesley publishing company,2010.
4. Dual DSP plus micro for audio applications, Feb 2003,MTDA7503 Data sheet ,STMicroelectronics.
5. C.Xu, X.dong, N.jouppi, and Y,Xie Design implications of memristor -based ram crosspoint structures in design, automation test in Europe conf .exhibition(DATE),Mar. 2011 pp.1-6.
6. Design and Simulation of RADIX-8 booth encoder multiplier for signed and unsigned numbers by MINU THOMAS.
